Ammonium Production off Central Chile (36°S) by Photodegradation of Phytoplankton-Derived and Marine Dissolved Organic Matter
نویسندگان
چکیده
We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36°S). The mean penetration of solar radiation (Z1%) between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400-700 nm), UV-A (320-400 nm) and UV-B (280-320 nm), respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule) as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L(-1) h(-1) and a maximum rate of 1.49 µmol L(-1) h(-1). Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L(-1) h(-1). We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4(+) assimilation, while rates obtained from natural samples could contribute to 50-178% of spring-summer phytoplankton NH4(+) requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight.
منابع مشابه
Biological response to circulation driven by mean summertime winds off central Chile: A numerical model study
[1] A coupled physical-biological model of the waters off central Chile is used to investigate the nitrogen-phytoplankton-zooplankton response to ocean circulation driven by mean summertime winds. The circulation drives the upwelling of middepth water onto the continental shelf and reaches a quasistable rate between days 40 and 60 of the simulation. High-nutrient, low-phytoplankton biomass wate...
متن کاملClosely related phytoplankton species produce similar suites of dissolved organic matter
Production of dissolved organic matter (DOM) by marine phytoplankton supplies the majority of organic substrate consumed by heterotrophic bacterioplankton in the sea. This production and subsequent consumption converts a vast quantity of carbon, nitrogen, and phosphorus between organic and inorganic forms, directly impacting global cycles of these biologically important elements. Details regard...
متن کاملThe Source, Cycling, and Behavior of Chromophoric Dissolved Organic Matter in Coastal Waters
Our long term research goal is to ascertain the nature and magnitude of optical effects (absorbance / fluorescence / scattering) in surface seawaters associated with the production and cycling of marine colloidal organic matter. We are particularly interested in determining how these effects are driven or modulated by the productivity dynamics of phytoplankton and marine heterotrophic bacteria ...
متن کاملA substantial fraction of phytoplankton-derived DON is resistant to degradation by a metabolically versatile, widely distributed marine bacterium
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lyse...
متن کاملProduction and partitioning of organic matter during simulated phytoplankton blooms
Few studies have examined the partitioning of organic matter in upwelling systems, despite the fact that these systems play a key role in carbon and nitrogen budgets in the ocean. We examined the production and partitioning of phytoplankton-derived organic matter in deck incubations off Oregon during the upwelling season. During exponential growth of the phytoplankton, $78% of total accumulated...
متن کامل